Complexity of integer quasiconvex polynomial optimization

نویسنده

  • Sebastian Heinz
چکیده

We study a particular case of integer polynomial optimization: Minimize a polynomial F̂ on the set of integer points described by an inequality system F1 ≤ 0, . . . , Fs ≤ 0, where F̂ , F1, . . . , Fs are quasiconvex polynomials in n variables with integer coefficients. We design an algorithm solving this problem that belongs to the time-complexity class O(s) · lO(1) · dO(n) · 2O(n 3), where d ≥ 2 is an upper bound for the total degree of the polynomials involved and l denotes the maximum binary length of all coefficients. The algorithm is polynomial for a fixed number n of variables and represents a direct generalization of Lenstra’s algorithm in integer linear optimization. In the considered case, our complexity-result improves the algorithm given by Khachiyan and Porkolab for integer optimization on convex semialgebraic sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2O(nlogn)

We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For th...

متن کامل

A Faster Algorithm for Quasi-convex Integer Polynomial Optimization

We present a faster exponential-time algorithm for integer optimization over quasi-convex polynomials. We study the minimization of a quasiconvex polynomial subject to s quasi-convex polynomial constraints and integrality constraints for all variables. The new algorithm is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). A lower time complexity is reached...

متن کامل

Applying Convex Integer Programming: Sum Multicoloring and Bounded Neighborhood Diversity

In the past 30 years, results regarding special classes of integer linear (and, more generally, convex) programs flourished. Applications in the field of parameterized complexity were called for and the call has been answered, demonstrating the importance of connecting the two fields. The classical result due to Lenstra states that solving Integer Linear Programming in fixed dimension is polyno...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Integer Polynomial Optimization in Fixed Dimension

We classify, according to their computational complexity, integer optimization problems whose constraints and objective functions are polynomials with integer coefficients and the number of variables is fixed. For the optimization of an integer polynomial over the lattice points of a convex polytope, we show an algorithm to compute lower and upper bounds for the optimal value. For polynomials t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2005